本文共 3687 字,大约阅读时间需要 12 分钟。
KNN实现手写数字识别
博客上显示这个没有Jupyter的好看,想看Jupyter Notebook的请戳
import numpy as npimport matplotlib.pyplot as pltfrom PIL import Imagefrom ld_mnist import load_digits%matplotlib inline
import tensorflow as tf# Import MNIST datafrom tensorflow.examples.tutorials.mnist import input_datadef load_digits(): mnist = input_data.read_data_sets("path/", one_hot=True) return mnistmnist = load_digits()
Extracting C:/Users/marsggbo/Documents/Code/ML/TF Tutorial/data/MNIST_data\train-images-idx3-ubyte.gzExtracting C:/Users/marsggbo/Documents/Code/ML/TF Tutorial/data/MNIST_data\train-labels-idx1-ubyte.gzExtracting C:/Users/marsggbo/Documents/Code/ML/TF Tutorial/data/MNIST_data\t10k-images-idx3-ubyte.gzExtracting C:/Users/marsggbo/Documents/Code/ML/TF Tutorial/data/MNIST_data\t10k-labels-idx1-ubyte.gz
数据维度
print("Train: "+ str(mnist.train.images.shape))print("Train: "+ str(mnist.train.labels.shape))print("Test: "+ str(mnist.test.images.shape))print("Test: "+ str(mnist.test.labels.shape))
Train: (55000, 784)Train: (55000, 10)Test: (10000, 784)Test: (10000, 10)
mnist数据采用的是TensorFlow的一个函数进行读取的,由上面的结果可以知道训练集数据X_train有55000个,每个X的数据长度是784(28*28)。
x_train, y_train, x_test, y_test = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
展示手写数字
nums = 6for i in range(1,nums+1): plt.subplot(1,nums,i) plt.imshow(x_train[i].reshape(28,28), cmap="gray")
class Knn(): def __init__(self,k): self.k = k self.distance = {} def topKDistance(self, x_train, x_test): ''' 计算距离,这里采用欧氏距离 ''' print("计算距离...") distance = {} for i in range(x_test.shape[0]): dis1 = x_train - x_test[i] dis2 = np.sqrt(np.sum(dis1*dis1, axis=1)) distance[str(i)] = np.argsort(dis2)[:self.k] if i%1000==0: print(distance[str(i)]) return distance def predict(self, x_train, y_train, x_test): ''' 预测 ''' self.distance = self.topKDistance(x_train, x_test) y_hat = [] print("选出每项最佳预测结果") for i in range(x_test.shape[0]): classes = {} for j in range(self.k): num = np.argmax(y_train[self.distance[str(i)][j]]) classes[num] = classes.get(num, 0) + 1 sortClasses = sorted(classes.items(), key= lambda x:x[1], reverse=True) y_hat.append(sortClasses[0][0]) y_hat = np.array(y_hat).reshape(-1,1) return y_hat def fit(self, x_train, y_train, x_test, y_test): ''' 计算准确率 ''' print("预测...") y_hat = self.predict(x_train, y_train, x_test)# index_hat =np.argmax(y_hat , axis=1) print("计算准确率...") index_test = np.argmax(y_test, axis=1).reshape(1,-1) accuracy = np.sum(y_hat.reshape(index_test.shape) == index_test)*1.0/y_test.shape[0] return accuracy, y_hat
clf = Knn(10)accuracy, y_hat = clf.fit(x_train,y_train,x_test,y_test)print(accuracy)
预测...计算距离...[48843 33620 11186 22059 42003 9563 39566 10260 35368 31395][54214 4002 11005 15264 49069 8791 38147 47304 51494 11053][46624 10708 22134 20108 48606 19774 7855 43740 51345 9308][ 8758 47844 50994 45610 1930 3312 30140 17618 910 51918][14953 1156 50024 26833 26006 38112 31080 9066 32112 41846][45824 14234 48282 28432 50966 22786 40902 52264 38552 44080][24878 4655 20258 36065 30755 15075 35584 12152 4683 43255][48891 20744 47822 53511 54545 27392 10240 3970 25721 30357][ 673 17747 33803 20960 25463 35723 969 50577 36714 35719][ 8255 42067 53282 14383 14073 52083 7233 8199 8963 12617]选出每项最佳预测结果计算准确率...0.9672
准确率略高。
转载地址:http://ucvwo.baihongyu.com/